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13 Three Types of Random Variables

13.1. Review: You may recalﬂ the following properties for cdf
of discrete random variables. These properties hold for any kind
of random variables.

(a) The cdf is defined as Fx(z) = P[X < z]. This is valid for
any type of random variables.

(b) Moreover, the cdf for any kind of random variable must sat-
isfies three properties which we have discussed earlier:

CDF1 F¥ is non-decreasing

CDF2 FYy is right-continuous
CDF3 lim Fyx (z)=0and lim Fy (z)=1.
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(¢c) P[X =x] = Fx () — Fx (x7) = the jump or saltus in F at
x.

Theorem 13.2. If you find a function F' that satisfies CDF1,
CDF2, and CDF3 above, then F'is a cdf of some random variable.

561f you don’t know these properties by now, you should review them as soon as possible.
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Example 13.3. Consider an input X to a device whose output Y
will be the same jas the input if the input level does not exceed 5.
For input level fhat exceeds 5, the output will be saturated at 5.
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13.4. We can categorize random variables into three types ac-
cording to its cdf:

(a) If Fx(x) is piecewise flat with discontinuous jumps, then X
is discrete.

(b) If Fx(x) is a continuous function, then X is continuous.

) ) ) LSUv\g‘ ]""1- s ot ’F'a‘l’] . .
(¢) If Fx(x) is a piecewise continuous function with discontinu-

ities, then X is mixed.
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Figure 45: Typical cdfs: (a) a discrete random variable, (b) a continuous random
variable, and (c) a mixed random variable [16], Fig. 3.2].
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We have seen in Example that some function can turn a
continuous random variable into a mixed random variable. Next,
we will work on an example where a continuous random variable
is turned into a discrete random variable.

Example 13.5. Let X ~U(0,1) and Y = ¢g(X) where
(z) = 1, ©<0.6
N=3 0, =>06.
Before going deeply into the math, it is helpful to think about the
nature of the derived random variable Y. The definition of g(z)

tells us that Y has only two possible values, ¥ = 0 and Y = 1.
Thus, Y is a discrete random variable.

Example 13.6. In MATLAB, we have the rand command to gen-
erate U(0,1). If we want to generate a Bernoulli random variable
with success probability p, what can we do?

Exercise 13.7. In MATLAB, how can we generate X ~ binomial(2,1/4)
from the rand command?
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